首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2175篇
  免费   46篇
  国内免费   77篇
电工技术   11篇
综合类   30篇
化学工业   884篇
金属工艺   166篇
机械仪表   48篇
建筑科学   92篇
矿业工程   2篇
能源动力   157篇
轻工业   100篇
水利工程   5篇
石油天然气   6篇
武器工业   4篇
无线电   121篇
一般工业技术   388篇
冶金工业   73篇
原子能技术   21篇
自动化技术   190篇
  2024年   1篇
  2023年   23篇
  2022年   44篇
  2021年   51篇
  2020年   48篇
  2019年   43篇
  2018年   46篇
  2017年   58篇
  2016年   88篇
  2015年   65篇
  2014年   111篇
  2013年   200篇
  2012年   94篇
  2011年   197篇
  2010年   119篇
  2009年   156篇
  2008年   148篇
  2007年   135篇
  2006年   120篇
  2005年   110篇
  2004年   77篇
  2003年   71篇
  2002年   51篇
  2001年   26篇
  2000年   25篇
  1999年   36篇
  1998年   50篇
  1997年   23篇
  1996年   15篇
  1995年   13篇
  1994年   17篇
  1993年   9篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
排序方式: 共有2298条查询结果,搜索用时 22 毫秒
101.
Effects caused by the morphology of mesoporous silica on the characterization of protic ionic liquid-based composite membranes for anhydrous proton exchange membrane applications are investigated. Two types of SBA15 materials with platelet and fiberlike morphologies are synthesized and incorporated into a mixture of polymerizable monomers together with an ionic liquid (IL) [1-butyl-3-methylimidazolium bis(trifluoromethane sulfone)imide (BMIm-TFSI)] to form new conducting membranes using an in situ photo crosslinking process. Incorporation of a defined amount of fiber-shaped SBA 15 and platelet 15 significantly increases the ionic conductivity to between two and three times that of a plain poly(methyl methacrylate) (PMMA)/IL membrane (2.3 mS cm−1) at 160 °C. The protic ionic liquid (PIL) retention ability of the membranes is increased by the capillary forces introduced by the mesoporous silica materials, while ionic conductivity loss after leaching test is retarded. The highest ionic conductivity (5.3 mS cm−1) is obtained by incorporating 5 wt% of P-SBA 15 in the membrane to about six times that of plain PMMA/IL membrane (0.9 mS cm−1) at 160 °C after leaching test.  相似文献   
102.
This work is focused on the changes of phase structure in polystyrene/polyethylene blends with up to 15 wt.% of dispersed phase during elongational experiments in creep. In the first part, features of the experiments at constant stress with a special attention to morphology development in polymer blends are discussed. In the second part of the paper the deformation behavior of the dispersed droplets in dependence on applied stress and total strain is studied. It was found that with increasing the initial particle size the formation of homogeneously deformed long fibrils is preferred during the elongation. A maximum deformability of the droplets was observed, which cannot be increased by applying higher stresses, although the affine deformation of the droplets was not reached.  相似文献   
103.
Kinetics of isothermal crystallization of hydrogenated castor oil in water emulsions exhibiting multiple crystal morphologies have been studied experimentally by DSC and polarized light microscopy. The induction time of nucleation increases with the increase of the isothermal temperature under which crystallization occurred. Crystal growth has been observed by microscopy showing that both crystal morphologies, fibers and rosettes, grow linearly at the initial stage of crystallization and then slow down to reach a plateau value. The Avrami model, which has been widely used in kinetics studies of triacylglycerol systems, was employed to fit experimental results at different isothermal temperatures. It was found that experimental trends could be captured by introducing the volume fraction of each type of morphology into three-dimensional and one-dimensional full Avrami models.  相似文献   
104.
The structure and light-emitting properties of Si nanowires (SiNWs) fabricated by a single-step metal-assisted chemical etching (MACE) process on highly boron-doped Si were investigated after different chemical treatments. The Si nanowires that result from the etching of a highly doped p-type Si wafer by MACE are fully porous, and as a result, they show intense photoluminescence (PL) at room temperature, the characteristics of which depend on the surface passivation of the Si nanocrystals composing the nanowires. SiNWs with a hydrogen-terminated nanostructured surface resulting from a chemical treatment with a hydrofluoric acid (HF) solution show red PL, the maximum of which is blueshifted when the samples are further chemically oxidized in a piranha solution. This blueshift of PL is attributed to localized states at the Si/SiO2 interface at the shell of Si nanocrystals composing the porous SiNWs, which induce an important pinning of the electronic bandgap of the Si material and are involved in the recombination mechanism. After a sequence of HF/piranha/HF treatment, the SiNWs are almost fully dissolved in the chemical solution, which is indicative of their fully porous structure, verified also by transmission electron microscopy investigations. It was also found that a continuous porous Si layer is formed underneath the SiNWs during the MACE process, the thickness of which increases with the increase of etching time. This supports the idea that porous Si formation precedes nanowire formation. The origin of this effect is the increased etching rate at sites with high dopant concentration in the highly doped Si material.  相似文献   
105.
Graft-type ACS resin and α-methylstyrene (α-Mst)-containing ACS were synthesized by suspension polymerization. The effect of concentration of initiator and polyvinyl alcohol (PVA) on reaction was discussed. The graft efficiency (GE) increased with the increasing concentration of initiator in the first stage, but it began to decrease when the initiator concentration exceeded 3.3–3.5×10?4mol L?1. The GE decreased gradually with the increasing concentration of PVA. The rheological behavior, mechanical properties, and morphological structure of resins were studied. The rheological behavior became worse with the increasing content of chlorinated polyethylene and the melt is a pseudo-plastic liquid. The impact strength of graft-type ACS resin increased as the content of chlorinated polyethylene increased. The rheological behavior and impact properties of α-Mst-containing ACS resin got better because of the introduction of α-Mst, and the comprehensive properties was the best at the 5% α-Mst content of ACS resin.  相似文献   
106.
Continuous chaotic and shear mixing-induced morphology development of 60/40 w/w polypropylene/polyamide 6 (PP/PA6) blend and its nanocomposite with 5 wt% clay was investigated. PP and PP nanocomposite were mixed with PA6 in a single-screw extruder, respectively. Two screw geometries were used to induce chaotic and shear mixing, respectively. It was demonstrated that for PP/PA6 blend, the PA6 domains were transformed from large particles to short striations and to small droplets finally in shear mixing, whereas morphology of PA6 phase developed from lamellar layers to a partial continuous structure finally in chaotic mixing. For (PP/clay)/PA6 blend nanocomposite, the PA6 domains were deformed gradually from droplets to irregular fibrils in shear mixing and from short layers to thin fibrils in chaotic mixing. The PA6 fibrils formed finally in the latter were much thinner and uniform than those in the former. The dynamic storage moduli of samples prepared in both shear and chaotic mixing with these PA6 fibrils presented a solid-like response at lower frequencies. Moreover, the clay platelets dispersed initially in the PP phase migrated into PA6 phase finally in both shear and chaotic mixing and the exfoliation of clay platelets in PA6 phase was obviously improved in the latter.  相似文献   
107.
Typical features of liquid–solid reactions were reviewed: reaction kinetics, mass transfer effects and particle morphology. It was concluded that classical liquid–solid models based on ideal, non-porous geometries (sphere, infinite cylinder, slab) cannot satisfactorily describe real reactive solid particles with various surface defects, such as cracks, craters and limited porosity. Typically a too low reaction order for the reactive solid is predicted by the classical models. The surface morphology can be revealed by electron microscopy, which gives inspiration to develop new mathematical models for reactive solids.  相似文献   
108.
This is the first in-depth study examining the effect of morphology on the performance of 2-aminopyridine (2-apy) imprinted polymers. A series of polymers were prepared by varying the amount of crosslinking monomer (EGDMA) whilst the other polymer components remained constant. Physical characterisation was carried out using conventional techniques, such as nitrogen sorption porosimetry and solvent swelling studies. The use of a novel thermal desorption GC-MS technique suggested higher levels of polymer degradation with prolonged exposure to elevated temperatures for those polymers formed with lower amounts of EGDMA. The thermal desorption GC-MS profiles obtained correlated with the physical characteristics of the polymers, where higher levels of polymer bleed was found to occur with larger average pore diameters. Polymer physical characteristics were also found to correlate with the binding parameters (number of binding sites and polymer-template association energy) obtained from the Langmuir-Freundlich Isotherm (L-FI) and affinity distribution spectra (AD). The flexibility of the polymers formed from lower amounts of EGDMA combined the swelling effect of the solvents on the polymers resulted in an increase in affinity, which was both specific and non-specific in nature.  相似文献   
109.
Znl_xCoxO (x = 0.05) thin films are deposited on sapphire (0001) substrates by laser-molecular beam epitaxy technique at different substrate temperatures. The structural, stress and morphology evolution features are investigated by means of X-ray diffraction and atomic force microscopy. The surface parameters of roughness exponent α, root mean square (RMS) roughness w and autocorrelation length ~ are calculated and the surface parameters are preliminarily analyzed. The values of ~ vary from 0.7 to 0.9. The RMS roughness w is less than 2.2 nm, and it increases with increasing Ts from 300 to 400 °C, and then decreases when Ts is 500 °C. The autocorrelation length ~ decreases monotonously with the increase in Ts from 300 to 500 °C, which indicates that the increase in Ts restrains the spread of the surface fluctuations until Ts is higher than 400 °C.  相似文献   
110.
Micro-flowers of poly(p-phenylene pyromelliteimide) crystals   总被引:1,自引:0,他引:1  
Morphology control of poly(p-phenylene pyromelliteimide) (PPPI) crystals was examined using reaction-induced crystallization of oligomers during solution polymerization of self-polymerizable N-(4′-aminophenyl)-3-carboxyl-4-alkoxycarbonylphthalimide. Micro-flowers of the PPPI needle-like crystals were formed in which the needle-like crystals grew radially from the center part as petals. The molecules aligned regularly along the long axis of the needle-like crystal. The structure of alkoxy group in the monomer and the monomer concentration influenced the size of the needle-like crystals, and their average length and width were changeable from 640 nm to 1.69 μm and from 110 nm to 210 nm, respectively. The average thickness was 20 nm. The obtained micro-flowers possessed high crystallinity and exhibited excellent thermal stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号